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abstract

This thesis addresses the problem of autonomous and precise landing of a

quadcopter with field-of-view (FOV) constraints. For quadcopter precision-

landing tasks, knowledge of the landing pad location is vital. When landing

pad location is obtained by a quadcopter-mounted camera, landing accuracy

can be improved if the quadcopter maintains visual contact with the landing

pad at all times. The main contribution of this work is the integration of

FOV constraints into the minimum-snap trajectory generation algorithm

for vision-based quadcopter landing. Verification in Gazebo simulation and

with real-world experiments is done to show the efficacy of the algorithm,

in which visual-inertial odometry (VIO) is used for estimating the position

and orientation of the quadcopter. A custom-designed quadcopter is used to

perform real-world tests, in which all navigation and control algorithms are

computed onboard in real time. An open-source implementation of the code

is provided to the community, which also includes instructions for building

the VIO quadcopter and experimentation.
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1 introduction

1.1 Motivation

In the rapidly evolving domain of unmanned aerial vehicles (UAVs), quad-

copters have emerged as versatile tools with many applications. The success

of many of these applications hinges on the ability of quadcopters to execute

precise and safe landings, motivating the need for development of robust

landing algorithms. Real-world examples include situations where quad-

copters must safely touch down in close proximity to individuals, providing

critical roles in tasks such as delivery services and search-and-rescue opera-

tions. Similarly, collaborative landing scenarios require quadcopters to land

on moving robotic platforms. Within this realm, the focus of this thesis

lies in FOV constrained quadcopter landing, in which landing accuracy is

improved by ensuring visibility of the landing pad by a quadcopter-mounted

camera.

The challenges posed by FOV constrained landings are multifaceted.

Factors such as quadcopter attitude1 and position relative to the landing

pad significantly influence line of sight of the camera. Inadequate visibility

may result in increased landing errors, collisions, and a decrease in overall

safety. Additionally, trajectory planning and control must be run in real-time

on the low-power onboard computer, requiring light-weight and efficient

algorithms. Addressing these challenges is imperative to ensure the reliability
1Attitude represents the orientation of an aerial vehicle.
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and safety of quadcopter operations within real-world contexts.

1.2 Overview

This work aims to use a quadcopter equipped with a forward-facing stereo

camera and a down-facing monocular camera for autonomous landing. The

stereo camera paired with an IMU is used to perform VIO to estimate the

quadcopter state (pose2 and velocity), while the down-facing camera is used

to track an AprilTag fiducial marker on a landing pad.

The AprilTag detection algorithm tracks the pose of the AprilTag marker

in the frame of the down-facing camera. Once the AprilTag marker is

detected, a quadratic program (QP) is solved to find a minimum-snap3

trajectory from the current quadcopter pose to the pose of the landing

pad (i.e. AprilTag marker). The QP contains constraints that enforce the

center of the AprilTag marker to be in the FOV of the down-facing camera.

Formulating these FOV constraints in the QP framework constitutes the

main theoretical contribution of this work.

After a minimum-snap trajectory has been obtained, we use a model-

predictive control (MPC) algorithm to track (i.e. follow) the trajectory.

MPC provides thrust and angular rate to control the quadcopter, and uses a

10-dimensional quadcopter model in which the state is given by position r,

velocity v and orientation quaternion q. Perception-aware MPC (PAMPC)
2Pose represents the 3D position and orientation of an object.
3Snap is the second time derivative of acceleration.
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FOV-constrained
min-snap QP PAMPC System

VIOAprilTag

xd u

y

x̂

Figure 1.1: Implemented feedback loop for landing on an AprilTag marker.
The AprilTag algorithm estimates the pose of the AprilTag marker. Visual-
inertial odometry (VIO) provides a quadcopter state estimate x̂ given the
system output y (stereo image and IMU data). The FOV-constrained min-
snap QP provides the desired state xd given x̂ and AprilTag marker pose.
Perception-aware model-predictive control (PAMPC) generates the control
input u given xd and x̂.

from [1] is implemented by including a perception term in the MPC objective

function to ensure the down-facing camera can view the landing pad.

A companion computer (CC) mounted on the quadcopter receives data

streams from all the components on the quadcopter such as the cameras,

IMU and flight control unit (FCU). The CC is the “brain” of the quadcopter

and is responsible for computing 1) the VIO-provided state estimation, 2)

the landing pad pose and 3) control inputs via PAMPC. An illustration of

the proposed framework is shown in Figure 1.1. Code for generating the

FOV-constrained landing trajectory and for MPC/PAMPC control of the

quadcopter has been released as open-source software4.

4https://github.com/seqwalt/vioquad_land

https://github.com/seqwalt/vioquad_land
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2 background

This chapter provides the necessary context to understand the proposed

research. Quadcopter dynamics and control are first discussed, followed by

an introduction to the minimum-snap QP trajectory generation framework.

Then, VIO methods and variations commonly used with quadcopter system

are described. Finally, the AprilTag detection algorithm is introduced, along

with reasoning for its use in this thesis.

2.1 Quadcopter Dynamics

We consider the following 10-dimensional quadcopter model [1] in this work.

The state of the quadcopter is

x =
[
x y z ẋ ẏ ż qw qx qy qz

]T
∈ R10

=
[
rT vT qT

]T
,

where we define r := [x y z]T , v := [ẋ ẏ ż]T and q := [qw qx qy qz]T .

The vectors r and v are the position and velocity of the quadcopter body

frame expressed in the world frame, respectively. The orientation vector q

is a unit quaternion that defines the rotation from the world frame to the

body frame. The control inputs are mass-normalized thrust τ and angular
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velocity ω expressed in the body frame, compactly expressed as

u =
[
τ ωT

]T
∈ R4.

The system dynamics can then be described as follows:

ẋ(t) = f(x(t),u(t)) (2.1)

=

ṙ
v̇
q̇

 =

 v
g +Rot(q)τ

1
2Λ(ω)q

 ,

where g := [0 0 −g] is gravity expressed in the world frame and τ =

[0 0 τ ]T is mass-normalized thrust expressed in the body frame. The

operator Rot(·) converts quaternions to rotation matrices according to

Rot(q) :=

 1 − 2q2
y − 2q2

z 2 (qxqy + qwqz) 2 (qxqz − qwqy)
2 (qxqy − qwqz) 1 − 2q2

x − 2q2
z 2 (qyqz + qwqx)

2 (qxqz + qwqy) 2 (qyqz − qwqx) 1 − 2q2
x − 2q2

y

 , (2.2)

and the operator Λ(·) is defined as

Λ(ω) :=


0 −ωx −ωy −ωz
ωx 0 ωz −ωy
ωy −ωz 0 ωx
ωz ωy −ωx 0

 .

2.2 Quadcopter Control

Quadcopters are mechanically simple machines that can achieve fast and

agile motion. However, they are underactuated control systems due to having
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6 degrees of freedom (i.e. position and orientation) with only four control

inputs (i.e. four motors), making the control of quadcopters challenging.

Here we describe MPC, a versatile optimization-based method that can be

used for quadcopter control.

Model Predictive Control

MPC is a method that can be used for quadcoptor control to track a desired

reference trajectory xd(t), given current state estimate x̂(t0) at time t0.

To use MPC for continuous nonlinear systems like (2.1), discretization is

required.

Let F (x,u) be a discretization of (2.1) (using the multiple-shooting

technique) with time step ∆t := ti − ti−1, ∀i ∈ {1, . . . , N}, and define

zN :=
[
x(tN) − xd(tN)

]
and z(t) :=

[
x(t) − xd(t)

u(t)

]
. The MPC method

then requires iteratively solving a finite-horizon optimization problem:

min
x(t1), ... , x(tN )

u(t0), ... , u(tN−1)

zTNQNzN +
N−1∑
i=0

z(ti)TQz(ti) (2.3)

s.t. x(t0) = x̂(t0)

x(ti+1) = F (x(ti),u(ti)), ∀i ∈ {0, . . . , N − 1}

x(ti) ∈ X , ∀i ∈ {0, . . . , N}

u(ti) ∈ U , ∀i ∈ {0, . . . , N − 1}

where Q and QN denote weight matrices and X ∈ R10 and U ∈ R4 are



7

constraints on the state and control input respectively. The optimization

problem is re-solved at a high rate to ensure accurate trajectory tracking.

Each time the problem is solved, u(t0) is applied as a control input to the

system. Specifically, control inputs given by MPC are sent to the FCU

which runs PX4 flight software [2]. The PX4 attitude rate PID controller

then computes motor voltages to directly control the motors.

2.3 Minimum-Snap Trajectory Generation

At its core, the minimum-snap trajectory generation method proposed in [3]

consists of solving a QP in which the decision variables control the shape

of a piecewise polynomial trajectory, the objective function minimizes the

snap (i.e. fourth derivative of position) of the trajectory, and the constraints

enforce continuity and satisfaction of the boundary conditions and waypoints

of the trajectory.

From [3], σT (t) is the quadcopter trajectory and is defined as

σT (t) =
[

rT (t)
ψT (t)

]
=


xT (t)
yT (t)
zT (t)
ψT (t)

 :=



∑n
i=0 σT i1t

i t0 ≤ t < t1∑n
i=0 σT i2t

i t1 ≤ t < t2
...∑n

i=0 σT imt
i tm−1 ≤ t ≤ tm

, (2.4)

where ψT (t) is the yaw trajectory, n is the polynomial order, and m is the

number of time intervals.

To enforce continuity of the p-th derivative of σT , where σ
(p)
T (t) =
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∑n
i=p

i!
(i−p)!σTij t

i−p, ∀t ∈ [tj−1, tj] , j ∈ {1, . . . ,m− 1}, we can write:

n∑
i=p

i!
(i− p)!σTij t

i−p
j =

n∑
i=p

i!
(i− p)!σTi,j+1t

i−p
j

n∑
i=p

σTij − σTi,j+1 = 0, ∀j ∈ {1, . . . ,m− 1}. (2.5)

Defining the notation r(p)
T (tj) := dprT

dtp

∣∣∣∣∣
t=tj

and ψ(p)
T (tj) := dpψT

dtp

∣∣∣∣∣
t=tj

, the

minimum-snap QP can then be formulated as

min
rTij , ψTij
∀i∈{0,...,n}
∀j∈{1,...,m}

∫ tm

t0
µr

∥∥∥r(kr)
T (t)

∥∥∥2
+ µψ

(
ψ

(kψ)
T (t)

)2
dt (2.6)

s.t. σT (tj) = σj, j = 0, . . . ,m (2.7)

r(p)
T (tj) = r(p)

j or free, j = {0,m}; p = 1, . . . , kr (2.8)

ψ
(p)
T (tj) = ψ

(p)
j or free, j = {0,m}; p = 1, . . . , kψ (2.9)

n∑
i=p

(rTij − rTi,j+1) = 0, j = 1, . . . ,m− 1; p = 0, . . . , kr (2.10)

n∑
i=p

(ψTij − ψTi,j+1) = 0, j = 1, . . . ,m− 1; p = 0, . . . , kψ (2.11)

where µr and µψ make the integrand nondimensional. Equality (2.7) encodes

way-point constraints, (2.8) and (2.9) encode constraints at the initial and

final time (e.g. to fix initial velocity and acceleration), (2.10) and (2.11)

ensure continuity of the piecewise polynomials and their derivatives (derived

from (2.5)). In [3], kr = 4 to minimize trajectory snap and kψ = 2 to

minimize yaw angular acceleration.
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Note (2.6)–(2.11) can be written in the following compact form of a

convex QP:

min
c

cTHc + cTg (2.12)

s.t. Ac ≤ b,

where c, g, b, A and H ∈ S+ are of appropriate dimension and S+ denotes

the set of symmetric positive semidefinite matrices.

Analytical expression of the objective function

Noting that (2.6) has an integral objective function, we show here how to

obtain an analytical form. Since we are minimizing a quadratic objective,

we first express the square of the trajectory for the p-th derivative σ
(p)
T (t).

For example p = 4 would be used for snap minimization. To keep generality,

we do not specify the value of p in the following.

(
σ

(p)
T (t)

)2
=

 n∑
i=p

i!
(i− p)!σTij t

i−p

2

=
n∑
i=p

n∑
k=p

i!k!
(i− p)!(k − p)!σTijσTkj t

i+k−2p ∀t ∈ [tj−1, tj] , j ∈ {1, . . . ,m}
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We can then take the integral to evaluate the objective:

∫ tj

tj−1

(
σ

(p)
T (t)

)2
dt =

n∑
i=p

n∑
k=p

i! k! σTijσTkj

(i− p)!(k − p)!
ti+k−2p+1
j − ti+k−2p+1

j−1

i+ k − 2p+ 1 ∀j ∈ {1, . . . ,m}

Recall that n is the order of the piecewise polynomials, m is the number

of time intervals and p is the order for minimization (p = 4 for minimum

snap). By putting the objective function into this summation form, we can

easily load the H matrix from (2.12) with the required terms.

2.4 Fiducial Marker: AprilTag

The AprilTag 3 fiducial system [4] is a popular choice for UAV landing

applications due to its ability to trade-off between pose estimation accuracy

and estimation speed via simple parameter tuning. This capability is

especially useful for low size weight and power applications such as UAVs that

only have onboard computing capabilities such as is considered in this work.

Additionally, the AprilTag algorithm reduces random noise interference via

adaptive thresholding, and improves pose estimation accuracy by using edge

refinement methods.

As the altitude of the landing quadcopter decreases, the edges of the

AprilTag marker will exceed the FOV of the down-facing camera. As such, it

is important to include multiple markers of differing sizes on the landing pad.
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Figure 2.1: Different types of fiducial markers that can be used by the
AprilTag 3 algorithm [4]. In this work, the recursive marker of type f) is
used due to its applicability for quadcopter landing.

A recursive pattern of concentric markers (see Figure 2.1) as introduced in

[4] is convenient for ensuring a small marker footprint, and enabling precise

quadcopter landing in the center of the marker pattern. The general outline

of the AprilTag algorithm is as follows:

1. Apply adaptive thresholding to the grayscale input image.

2. Segment continuous boundaries.

3. Fit quadrilaterals to each cluster of unordered boundary points.

4. Decoding the tag.

5. Perform edge refinement.
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2.5 Visual-Inertial Odometry

In scenarios in which global positioning information (using GPS, motion-

capture) is not available, autonomous quadcopters must rely on other meth-

ods for state estimation. Given sensor data such as pixel intensities from

a camera and IMU measurements, visual-inertial odometry (VIO) can be

used for quadcopter state estimation. In this section, perspective camera

modelling is discussed, visual odometry (VO) and VIO are introduced, then

a short review of relevant VIO research is provided.

Modelling a Perspective Camera

In VO, the pinhole camera representation is often used to provide a simple

approximation of a perspective camera. A true pinhole camera does not

contain a lens, but instead a small aperture (i.e. the pinhole) for light to

pass through to a sensor (see Figure 2.2).

In order for visual odometry algorithms to leverage the simplicity of the

pinhole model, the raw camera image first needs to be undistorted such

that straight lines in a 3D scene remain straight in the image. Common

distortion types are shown in Figure 2.3.

Let P = [X, Y, Z]T be a 3D point in the camera reference frame C,

as shown in Figure 2.2. P is projected onto the 2D image plane with
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P = (X, Y, Z)

zc = f

C

zc

yc

xc

y

x

v

u

(u, v)

(cx, cy)

optical
axis

Figure 2.2: Pinhole camera model. The pinhole is located at the origin of
camera frame C. Note the image plane is located a distance f (focal length)
in front of the pinhole. The principal point is located along the optical axis
at pixel coordinates (cx, cy). The 3D point P is expressed in the camera
frame.

Figure 2.3: Types of radial distortion. Pincushion distortion (left), barrel
distortion (middle), undistorted (right).
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coordinates (u, v) via the relationship

u = fx
X

Z
+ cx, v = fy

Y

Z
+ cy, (2.13)

where fx and fy are the horizontal and vertical focal lengths in pixel units,

respectively. Note fx and fy may differ due to non-square pixel sizes. Also,

cx and cy denote the pixel location of the principal point (ideally in center

of image). Equation (2.13) can be equivalently expressed as

λ

uv
1

 = KP =

fx 0 cx
0 fy cy
0 0 1


XY
Z

 ,

where λ is a scale factor, and K is known as the camera intrinsic matrix.

Visual Odometry

Visual odometry is the algorithmic process of analyzing a chronological

sequence of images from one or more cameras to estimate the pose of the

camera or cameras. The general VO pipeline is shown in Figure 2.4.

In feature-based VO, pixel locations (i.e. features) corresponding to

corners within the current image are detected using an algorithm such as

FAST [6]. A feature descriptor such as ORB [7] describes (numerically) the

local appearance around the feature point and is ideally invariant to changes

in lighting, translation, scale, and in-plane rotation. Features in the current

and previous image can then be matched by comparing feature descriptors
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Figure 2.4: A feature-based visual odometry pipeline [5].

(using the Hamming distance is common). After feature detection and

matching occurs, the relative change in pose of the camera system from the

previous to the current image is estimated. By concatenating the relative

poses between images, the position and orientation of complete trajectory

can be estimated. Depending on the type of sensor used, this process uses

different types of methods.

As shown in figure 2.4, the motion estimation step contains three different

options for computing relative pose. The 2D-to-2D method is more common

with monocular cameras, in which motion is estimated from 2D feature

correspondences by utilizing the epipolar constraint [5]. This method can

be used to estimate 3D points (up to a scale factor) corresponding to the

2D features. The 3D-to-3D method computes motion from 3D structure

correspondences (i.e. 3D points) which is possible when using a stereo
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(binocular) camera setup. The stereo camera system has two cameras,

allowing for triangulation of 3D points at each time instant. Finally the

3D-to-2D method can be employed by both mono or stereo cameras. In the

monocular case, 3D points need to first be determined using the 2D-to-2D

method, then the 3D-to-2D method can be used. More detailed review of

these motion estimation methods can be found in [5]. Optionally, local

bundle adjustment (a least-squares optimization) can be performed over

multiple previous pose estimates, minimizing the image reprojection error of

the estimated 3D structure points in order to improve trajectory accuracy.

In contrast to the more “classical” feature-based VO, also known as

indirect VO, direct VO consists of directly utilizing raw pixel intensities to

include a larger percentage of available image information. Direct methods

minimize the photometric error between images in order to estimate trans-

formations between camera poses. These methods tend to have improved

accuracy over indirect (feature-based) methods due to their utilization of

more available information. However, direct methods also incur a larger com-

putational burden than indirect. Many VO algorithms attempt to achieve

the accuracy of direct methods with the computational efficiency of indirect

methods by combining the two into hybrid direct/indirect VO. In fact, the

VIO algorithm used in this thesis is a hybrid method [8].
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Visual-Inertial Odometry

The accuracy and robustness of VO can be greatly improved upon by using

an inertial measurement unit (IMU), which measures linear acceleration and

angular rate. Using a camera setup with a rigidly attached IMU to perform

locally accurate state estimation is known as visual-inertial odometry (VIO).

Due to the higher refresh rate of IMUs compared to cameras, VIO algorithms

can handle rapid movements better than VO algorithms. As such, VIO is a

natural choice for fast and dynamic robotic applications such as quadcopter

flight. Additionally, the use of an IMU allows for more accurate velocity

estimation, which is helpful for precise quadcopter control.

When combining information obtained from a camera and IMU for VIO,

there are two main strategies: loose and tight coupling. In loosely coupled

VIO systems, state is estimated independently between the camera and IMU.

This means that VO and IMU integration are performed separately, then

combined later to obtain a fused estimate. In contrast, tightly coupled

VIO systems combine visual information (2D features, pixel intensity) and

IMU information (acceleration, angular velocity) to obtain the final estimate.

Loose coupling, while computationally efficient, results in loss of information.

Tight coupling achieves higher accuracy within a single process. In figure

2.5, a comparison of loose and tight VIO frameworks is shown.

VIO algorithms can be further bisected in groupings of filtering-based

or optimization-based methods. In filtering-based methods, the current

state estimate only depends on the current measurement of the system
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Figure 2.5: Loosely coupled (left) and tightly coupled (right) feature-based
VIO paradigms [9].

and the previous state estimate. As such, filtering based methods are

computationally efficient, but also will inherit inaccurate estimates in the

current state estimate, effectively “locking” any poor measurement in the

filter [9]. It is also well known that the extended Kalman filter (a popular

choice for VIO methods) for nonlinear systems is not optimal in the least-

squares sense, which may cause inconsistencies due to linearization error.

Alternatively, optimization-based VIO aims to improve state estimates

along the trajectory history of the robot. This is in contrast to filtering-based

VIO which only provides an estimate of the current state without updating

previous ones. Since optimization approaches relinearize part (or all) of the

previous measurements as the estimate is updated, they are generally more

accurate than filtering [9]. Early research on VIO algorithms tend to favor

filtering-based methods for their computational efficiency. More recently,

optimization-based methods have become increasingly popular due to their

better accuracy and availability of more powerful computers.
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VIO of Choice

Given the measurements and comparisons of different VIO algorithms pro-

vided by [10] as described in the next chapter, the VIO algorithm we chose

to use for this thesis was ROVIO [8], due to its balance of performance and

computational efficiency. ROVIO is semi-direct, filtering-based, and uses

tight coupling between inertial and visual measurements.
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3 related works

In this chapter we review multiple areas of research related to autonomous

vision-based quadcopter landing. We will discuss VIO, FOV-constrained

quadcopter flight, perception-aware quadcopter control and landing schemes

for quadcopters.

3.1 Visual-Inertial Odometry

Here we provide a review of multiple VIO frameworks, considering both the

filtering and optimization methods used for visual-inertial motion estima-

tion. For a more in-depth review, [11] provides a survey of visual-inertial

navigation, with notes on observability analysis and open questions in the

field. Also, [9] reviews multiple methods of VIO for use with quadcopters.

In [12] the authors present a Multi-Sensor-Fusion EKF method that can

process delayed, relative and absolute measurements from many different

sensors and sensor types. While this work is general to multiple types of

sensors, it can be used with visual odometry as well. This method fuses

sensors in a loosely coupled manner, such that the computational burden is

lower than tightly-coupled methods, but does not exploit correlations among

all measurements. Iterative EKF is used, which linearizes the measurement

model iteratively, providing better performance than a standard EKF.

In [13], a tightly coupled sensor fusion method is proposed. Specifically,
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this method fuses global positional information with visual and inertial

measurements in a tightly-coupled nonlinear optimization–based estimator.

A cost function including visual, inertial and global measurement errors is

used to perform an optimization that estimates the state.

In [14], authors use VIO to estimate state then use monocular dense

mapping to reconstruct the surrounding environment. This map can then

be used to perform trajectory planning. A rapidly exploring random graph

is used to search an asymptotically optimal path.

In [15], a RGB-D sensor based system is used to stabilize and control

a small quadrotor. Similar to the previous mentioned work [14], this work

estimates its own position using the RGB-D sensor fused with an IMU,

builds a dense 3D model of the environment, and uses this model to plan

trajectories through the environment. A PID position controller is used

to control the position of the robot. It should be noted that a 3D map is

not necessary for stabilization of the quadcopter, but is needed for obstacle

avoidance and trajectory planning.

Authors in [10] performed benchmark comparisons of various VIO meth-

ods on different computing devices with applicability for flying robots. The

VIO algorithms they test are outlined here, and shown in Table 3.1

MSCKF: The multi-state constraint Kalman filter algorithm [16] proposes

a measurement model that expresses the geometric constraints between all

of the camera poses that observed a particular image feature, without the

need to maintain an estimate of the 3D feature position in the state.
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Algorithm Coupling Backend Frontend
MSCKF [16] Tight EKF Indirect
OKVIS [17] Tight Sliding window opt. Indirect
ROVIO [8] Tight Iterated EKF Semi-direct

VINS-Mono [18] Tight Sliding window opt. Indirect
SVO+MSF [19] Loose EKF Semi-direct

SVO+GTSAM [20] Tight Factor graph opt. Semi-direct
Table 3.1: Summary of various VIO algorithms.

Performance: Accuracy was consistent regardless of the platform. In

addition to robustness, it generally provided modest resource usage and low

per-frame processing time. However, most of the modern algorithms (below)

are able to achieve higher overall accuracy with a manageable increase in

resource requirements.

OKVIS: Open keyframe-based visual-inertial SLAM [17] uses non-linear

optimization on a sliding window of keyframe poses. The cost function

includes visual landmark reprojection errors, and inertial errors. BRISK

descriptors are computed from detected corners to feature matching between

frames.

Performance: Demonstrated accurate performance across all of the

hardware platforms, including the embedded systems, despite low update

rates due to long per-frame processing times.

ROVIO: Robust visual inertial odometry [8] is an EKF-based method. In

addition to FAST corner features, whose 3D positions are parameterized with
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robot-centric bearing vectors and distances, multi-level patches are extracted

from the image around the features. The patch features are tracked, warped

based on IMU-predicted motion, and the photometric errors are directly

used in the update step as innovation terms to produce a tightly coupled

framework.

Performance: Performance was accurate and consistent, suggesting

good robustness to challenging trajectories, given a sufficiently powerful

computer.

VINS-Mono: VINS-Mono [18] is a nonlinear optimization-based sliding

window estimator, tracking robust corner features, similar to OKVIS. IMU

measurements are pre-integrated before being used in the optimization, and

a tightly-coupled procedure for relocalization is proposed.

Performance: The most consistently accurate and robust across all

of the hardware platforms. Superior performance comes at the cost of a

potentially prohibitive computation expenditure.

SVO+MSF: Multi-Sensor Fusion (MSF) [12] is a general EKF framework

for fusing data from different sensors in a state estimate. Semi-Direct Visual

Odometry (SVO) [21] is a computationally lightweight visual odometry

algorithm that aligns images by tracking FAST corner features [6] and

minimizing the photometric error of patches around them. The outputs

from both frameworks are fused [19]. This loose coupling can cause pose

scale issues.
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Performance: Highest level of computational efficiency, but with the

corresponding lowest level of accuracy.

SVO+GTSAM: SVO is combined with the Georgia Tech Smoothing and

Mapping (GTSAM) toolbox [20]. The same visual odometry frontend as in

the SVO+MSF system has also been paired with a full-smoothing back-end

performing online factor graph optimization using iSAM2 [22].

Performance: Not as robust as other methods, but produces the most

accurate trajectories for many of the platform-dataset combinations, when

considering the algorithms without loop closure.

3.2 Quadcopter Field-of-View Constraints

The following works contain relevant discussions regarding maintaining FOV

constraints for quadcopter systems.

In [23], the problem of aggressive collision avoidance in an unknown

environment with limited FOV sensing is addressed. In this work, they

consider the scenario in which initially the quadcopter is able to sense the

obstacles in front of it (assuming a front-facing camera is used). However,

once the quadcopter performs a high-acceleration maneuver to fly between

obstacles, the camera may no longer see the obstacles. This work tackles

this problem by contributing a framework that allows safe execution of

high-acceleration motion primitives, by choosing a safe motion primitive

that was generated in the past when obstacles were observed. An MPC
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framework was used to derive the necessary conditions for safety. While

providing a solution for a stationary environment, this framework could

struggle in dynamic environments when the obstacles are not in the camera

FOV.

Authors in [24] consider the problem of keeping a landmark in the FOV

of a down-facing camera that is attached to a quadcopter, while navigating

closer to the landmark. As shown in Figure 3.1, the problem lies in the

fact that the quadcopter needs to tilt toward the landmark, which can

cause the down-facing camera to lose view of the landmark. To address

this issue, the quadcopter needs to both fly toward the landmark and

increase altitude, which effectively allows the FOV to capture more of the

scene. In [24], authors parameterize the trajectory using B-splines, and

exploit the differential flatness of the quadcopter system to solve a sequential

quadratic program (SQP) to optimize the trajectory, which is non-convex

problem. While showing promising performance in simulation, the result

was not verified in hardware. Similarly, [25] addressed FOV-constrained

target tracking while avoiding obstacles and occlusions using similar SQP

techniques.

In [26], authors contribute a time-optimal algorithm for efficient path

parameterization for quadcopters with FOV constraints. This approach

assumes an a-priori path is provided, and the task of the authors is to find

the shortest time such that no FOV constraints are violated. They consider

the control of a quadcopter that has a front-facing camera, and are able to
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Figure 3.1: Left: The quadcopter needs to pitch to the right to move toward
the red target, causing the target to leave the camera FOV. Right: By
moving upward and to the right, the quadcopter can keep the targets in the
FOV (yellow dashed line) with a faster completion time than a near-hover
method (red dashed line). Figures from [24].

obtain a convex constraint that can be used to solve this problem. This

approach is useful for drone racing in which a path may already be planned,

and the quadcopter controller needs to determine how fast the fly. However,

for more general FOV-constrained applications such as tracking and landing,

the planning and perception contrainst need to be considered at the same

time.

In [27], the authors consider image-based visual servoing (IBVS) control

of a quadcopter, while also guaranteeing visibility constraints with a control

barrier function (CBF) approach. IBVS control does not involve estimation

of the pose of the quadrotor, and instead provides control based on the error

between current and desired features on the image plane (tracking in image

space, not state space). In this way, the dynamics of the image features
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are derived from the quadrotor dynamics and the camera projection. A

virtual camera approach is adopted to achieve a simplified image feature

dynamics and facilitate the controller design, and also proves Lyapunov

stability of the specific IBVS implementation. Unfortunately the IBVS

method is completely dependant on viewing the image features to work

properly, forcing the quadcopter to remain in near-hover to make experiments

successful. While the near-hover condition is maintainable for slow flight,

fast quadcopter flight violates this condition considerably.

3.3 Perception-Aware Quadcopter Control

Closely related to FOV-constrained control is perception aware (PA) control.

In general, PA control aims to control an agent such that some perception

goals are met. For example goals could include soft/hard FOV constraints

(previous section only considers hard constraints) and viewing visually

feature-rich areas to improve VIO accuracy. The following works look into

various PA methods designed specifically for quadcopter/multicopter flight.

Perception-aware model predictive control (PAMPC) provides an ap-

proach that adds a perception objective into their MPC framework [1]. They

model the perception cost as minimizing 1) position of a point of interest

(POI) from the center of the image plane and 2) the velocity of the POI in

the image frame. A 3D POI in the world frame is translated via quaternions

to the point of interest in the camera frame, which is then projected onto the
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image plane using the pinhole camera model. The resulting MPC is a non-

linear program with quadratic costs. This is approximated by a sequential

quadratic program (SQP) where the solution is iteratively approximated and

used as a MPC. This PAMPC method can be considered as implementing

a soft FOV constraint, since the FOV term is in objective function of the

optimization. Compared to [24], PAMPC does not restrict the resulting

trajectory to be a piecewise polynomial, allowing for increased dynamic

feasibility of the resulting path. While PAMPC was motivated for keeping

salient image features in the view, it can be used for keeping any 3D point in

the FOV. PAMPC is tested in hardware on a quadcopter using the ACADO

toolkit [28] for MPC.

In [29] aggressive quadcopter speeds are achieved using a PA motion

planning algorithm. Specifically, differential flatness is used to design the

position trajectory of the quadcopter, while the yaw trajectory is deter-

mined by ensuring better observation of visual features. The method is

considered for a quadcopter passing through specified waypoints. Compared

with PAMPC, [29] maximizes the number of features visible in consecutive

keyframes as opposed to enforcing that a certain set of features stay in view.

An initial optimization minimizes the total flight time by finding position

polynomials that satisfy given waypoints. A second optimization occurs

at each time step of the trajectory, and minimizes the yaw acceleration as

well as the relaxed visibility function. This algorithm converges to a local

optimum due to non-convexity.
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In [30], a MPC framework similar to PAMPC is proposed for multirotor

flight. The main difference is that the camera used is on an gimbal such

that the camera can freely view its surrounding area without moving the

multirotor body. In general, a solution like this one is a better idea for

larger drones that can hold such a gimbal. However, for smaller more agile

quadcopters, it may be difficult to use a gimbal method due to weight or size

restrictions. If the camera on the gimbal is used for a VIO pipeline, another

source of potential error (i.e. measuring the gimbal inverse kinematics) is

introduced.

In [31] PANTHER is introduced, a real-time PA trajectory planner for

multirotors. This work plans trajectories to keep dynamic obstacles in

the camera FOV while simultaneously avoiding them. Similarly, authors

in [32] propose RAPTOR, a robust and PA trajectory replanner for fast

quadcopter flight. Like in PANTHER, they propose a PA planning method

to actively observe and avoid unknown obstacles. From these two works it

is apparent that PA-based flight has much promise for use in quadcopter

obstacle avoidance.

3.4 Quadcopter Landing Schemes

In this final related works section, landing algorithms and control schemes

are discussed, with applications varying from landing on moving objects to

landing while counteracting the ground effect. First, we’ll mention some
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past and present fiducial marker systems that have been used for drone

landing.

In 2002 the “H” shape landing pad [33] was used for an autonomous

helicopter landing task. Similarly the “T” shape fiducial marker was used

in [34]. More advanced fiducial markers also have been developed including

recursive circular marker sets [35] and the first and second generations of

AprilTag [36, 37], which boast a low false-detection rate, and resemble a grid

of black and white squares. In [4] authors show the AprilTag 3 algorithm is

faster and has higher recall than both AprilTag 2 and the popular ArUco

detectors. Various classical computer vision techniques such as Hu moment

invariants, Hough transform, Gaussian smoothing and Canny edge detection

can be used to process the UAV landing pad images to determine altitude

and attitude. Metrics used to compare such methods consist of estimation

rate, success rate, attitude accuracy and positioning accuracy [38].

In [39], the authors consider a cooperative robotic system between a

UAV and unmanned ground vehicle (UGV). They contribute an autonomous

landing system for charging of the UAV such that the cooperative system

can perform long missions. The scheme utilizes fiducial markers for the UAV

to track the UGV, and a velocity controller that combines control barrier

function (CBF) and control Lyapunov function (CLF) constraints into a QP.

However [39] does not consider quadcopter attitude as a potential cause for

loss of view of the landing pad, since the method requires a small attitude

assumption.
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In [40], authors consider the quadcopter landing problem for a moving

target. A disturbance observer-based control method is used for robustness

against external disturbances during low altitude flight. To avoid target

loss situations a heuristic angle scheduling algorithm is proposed. An IR

beacon is placed on the landing pad, and an IR camera on the quadcopter

tracks it. Similarly, authors of [41] perform a landing of a quadcopter on a

car moving at 15km/hr. They use an MPC for trajectory generation with a

nonlinear feedback controller for tracking. While this thesis does not test

with a moving landing pad (but is an area for future investigation), we

believe our FOV-constrained approach would generalize well to such a case,

due to its ability to prioritize visibility of the landing pad.

Authors in [42] propose an integral sliding mode altitude controller that is

used in conjunction with ground effect compensation for landing of a model

helicopter. The integral sliding mode allows for asymptotic convergence to

the desired height. Similarly, [43] also employs classical control methods for

lading of a quadcopter. Specifically, a nominal PID controller is combined

with a robust compensator and ground effect compensator to provide better

low-altitude tracking.

Authors in [44] provide a neural network (NN) based approach for the

stable quadcopter landing problem. They present Neural-Lander, a deep

learning base nonlinear controller with guaranteed stability for landing. The

NN approach has potential benefits over the more classical control methods

by being able to learn unmodeled dynamic nonlinearities.
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4 field-of-view constrained landing

This chapter provides the main contributions of this work. First, FOV

constraints linear in acceleration are derived such that they can be included

in a min-snap QP problem. Then, the search and landing pipeline is

discussed, which contains tracking the search trajectory, checking landing

feasibility and generating then tracking the landing trajectory.

4.1 FOV Constraints for Min-snap QP

It is common in vision-based landing research to assume the UAV quadcopter

maintains small roll/pitch angles (e.g. [39]). However, this assumption can

be easily violated in real-world flight and can cause the landing pad to leave

the FOV of the quadcopter camera. The consequences of this could include

slow landing or complete landing failure in which the quadcopter cannot

re-attain FOV of the landing site. Our approach provides FOV constraints

to ensure visibility of the landing pad from the down-facing camera with no

assumption of small roll/pitch angles.

Overview of Approach

To support high-visibility of the landing pad, we propose linear constraints

to include in the minimum-snap QP (2.6) to satisfy the FOV requirement.

Given a xz-planar quadcopter model (see Figure 4.1) we describe the FOV
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Figure 4.1: FOV constraint geometry of a planar quadcopter. Note that r
is the quadcopter position, c is the down-facing camera position, l is the
landmark position to keep in the FOV. Also, θtiltx is the tilt angle toward
the global x-direction, αx is half the vertical FOV angle, and θx is the angle
relating the landmark-to-camera vector with the global z axis.

constraint in terms of the quadcopter tilt angle θtiltx . For the constraint

to be usable in the QP, it must be linear in terms of the decision vari-

ables. As such we replace the tilt angle with an equivalent expression using

quadcopter acceleration (i.e. arctan( ax
az+g )). Noting tan(x) is monotonic

on x ∈ (−π/2, π/2), we obtain two constraints linear in acceleration (4.5),

(4.6). We then perform the same steps for the yz-planar quadcopter model.
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Derivation of Constraints

For the planar (xz plane) quadcopter in Figure 4.1 with a mass-normalized

thrust τ , the acceleration of the planar quadcopter is

ax = τ sin(−θtiltx ) (4.1)

az = τ cos(θtiltx ) − g. (4.2)

In order to keep the landmark l =
[
lx ly lz

]T
in the camera FOV (with

vertical FOV angle 2αx), θtiltx must be constrained such that

−(αx − |θx|) ≤ θtiltx ≤ αx − |θx|, (4.3)

where θx = tan−1( lx−cx
cz−lz ) and c =

[
cx cy cz

]T
denotes the camera position.

Combining constraint (4.3) with (4.1) and (4.2), we obtain linear constraints

on the acceleration:

− tan(αx − |θx(ti)|) ≤ −ax
az + g

≤ tan(αx − |θx(ti)|)

=⇒ |ax| ≤ tan(αx − |θx(ti)|)(az + g), (4.4)

where the final implication is allowed by assuming az + g > 0, and where

θx(ti) is the θx value at time ti. Explicitly choosing the θx values at different

time points allows this constraint to be linear. In practice θx(ti) values are

chosen as m+ 1 equally spaced values from θx(t0) to θx(tm) (same process
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for θy(ti)). Re-arranging constraint (4.4) we can obtain constraints linear in

acceleration:

ax − az tan(αx − |θx(ti)|) ≤ g tan(αx − |θx(ti)|), (4.5)

−ax − az tan(αx − |θx(ti)|) ≤ g tan(αx − |θx(ti)|). (4.6)

As can be seen by constraint (4.4), we need to ensure tan(αx−|θx(ti)|)(az+

g) ≥ 0 for feasibility of the QP. A weak (i.e. trivial to satisfy) assumption

we can make is az + g ≥ 0, meaning the quadcopter should have less than a
π
2 tilt angle. However we cannot easily assume tan(αx − |θx(ti)|) ≥ 0, ∀t. In

practice we check αx − |θx(t0)| ≥ 0 is satisfied before attempting to solve the

QP, since αx − |θx(t)| ≥ 0 =⇒ tan(αx − |θx(t)|) ≥ 0, and |θx(t0)| ≥ |θx(ti)|,

∀i ∈ {1, . . . ,m}.

Practical Considerations

Planar to 3D: To extend the planar case, we create a constraint analogous

to (4.4) for the yz plane. Note this may cause small FOV violations if the

quadcopter yaw value is not close to 0 or π. This may be addressed in future

work, but can currently be naively addressed by decreasing the value of αx.

From camera trajectory to quadcopter trajectory: Note that techni-

cally, using the FOV constraints (4.4) when solving QP (2.6) will provide a

trajectory for the camera center. In the case where the camera center and
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quadcopter center do not not align, this could pose an issue when trying

to control the yaw of the quadcopter. Specifically, yawing the quadcopter

would move the camera position, which could violate the desired FOV con-

straints. To fix this, we can use QP (2.6) to determine the camera trajectory

and quadcopter yaw, then analytically determine the quadcopter trajectory

afterwards.

4.2 Search and Landing Pipeline

In this section, a step-by-step description of the FOV-constrained precise

landing pipeline is provided. We discuss tracking the search trajectory,

checking landing feasibility, generating the FOV-constrained landing trajec-

tory with a min-snap QP, and tracking the trajectory using PAMPC. Figure

4.2 provides a graphical overview of the flight and landing process.

Searching for the AprilTag Marker

Upon take-off of the quadcopter, a pre-generated search trajectory is loaded

and tracked by the quadcopter. We use MPC to track this trajectory, but

any tracking controller will work. Once the AprilTag marker comes into the

FOV of the down-facing camera, the AprilTag algorithm is initiated.

The output of the AprilTag algorithm is the pose of the AprilTag marker

from the coordinate frame of the down-facing camera (see Figure 4.3).

This relative pose can be represented as transformation matrix TCA ∈ R4×4.
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Figure 4.2: Quadcopter flight and landing process. The process starts with
Take off. Each sequence block starts with a green block, and finishes with a
blue block.

However, we need to compute TWA , the pose of the AprilTag marker expressed

in the VIO world frame, in order to generate a trajectory to the landing

pad.

After obtaining TCA , we can determine TWA with the following expression:
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Figure 4.3: Coordinate frames include the world frame W, quadcopter body
frame B, down-facing camera frame C and AprilTag frame A.

TWA = TCA T
B
C T

W
B , (4.7)

where

TWA : AprilTag frame expressed in VIO world frame

TCA : AprilTag frame expressed in down-facing camera frame

TBC : Down-facing camera frame expressed in quadcopter body frame

TWB : Quadcopter body frame expressed in VIO world frame

are known transformation matrices obtained from the AprilTag algorithm

(TCA ), measurement of hardware (TBC ) and VIO (TWB ). Note that exponential



39

smoothing is used to reduce noise of the AprilTag pose estimate. This

smoothing works well for a stationary landing pad, but a Kalman filter

would likely need to be implemented if a moving landing pad is considered.

Once TWA has been computed, the quadcopter needs to check feasibility

for solving a min-snap QP.

Checking Landing Feasibility

As mentioned in the previous section, before we generate the landing trajec-

tory, we first need to check feasibility of the FOV constraints. Noting that

θx(tm) = θy(tm) = 0 for landing in the center on the landing pad, we just

have to check the following is satisfied:

αx − |θx(t0)| > 0, (4.8)

αy − |θy(t0)| > 0, (4.9)

where θx(t0) and θy(t0) can be computed using θx = tan−1( lx−cx
cz−lz ) and

θy = tan−1( ly−cx
cz−lz ) respectively. Here, (cx, cy, cz) is the camera position as

estimated by VIO, and (lx, ly, lz) is the landing pad position in the VIO

world frame as computer by equation (4.7). If the check is successful, we

proceed to generating the landing trajectory.
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Landing Trajectory Generation

The FOV-constrained min-snap QP for generating the landing trajectory

extends the original min-snap QP (2.6) as follows:

min
rTij , ψTij
∀i∈{0,...,n}
∀j∈{1,...,m}

∫ tm

t0
µr

∥∥∥r(kr)
T (t)

∥∥∥2
+ µψ

(
ψ

(kψ)
T (t)

)2
dt (4.10)

s.t. r(p)
T (tj) = r(p)

j or free, j = {0,m}; p = 0, . . . , kr (4.11)

ψ
(p)
T (tj) = ψ

(p)
j or free, j = {0,m}; p = 0, . . . , kψ (4.12)

n∑
i=p

(rTij − rTi,j+1) = 0, j = 1, . . . ,m− 1; p = 0, . . . , kr (4.13)

n∑
i=p

(ψTij − ψTi,j+1) = 0, j = 1, . . . ,m− 1; p = 0, . . . , kψ (4.14)

|ax(tj)| ≤ tan(αx − |θx(tj)|)(az(tj) + g), j = 1, . . . ,m− 1

(4.15)

|ay(tj)| ≤ tan(αy − |θy(tj)|)(az(tj) + g), j = 1, . . . ,m− 1

(4.16)

where µr and µψ make the integrand nondimensional and [ax(t), ay(t), az(t)]T

:= r
(2)
T (t). Boundary conditions for position and yaw and their derivatives

are encoded in (4.11) and (4.12) respectively. Continuity of the piecewise

polynomials and their derivatives is ensured by (4.13) and (4.14). FOV

constraints are encoded in (4.15) and (4.16).

Boundary Conditions: Note initial conditions (i.e. r(p)
0 and ψ

(p)
0 ) are

given by the current quadcopter state, while final conditions (i.e. r(p)
m and
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ψ(p)
m ) are given by the desired quadcopter landing state. Since the quadcopter

will land on the AprilTag marker, position and yaw final conditions are

given by TWA (i.e. the AprilTag pose estimate in the world frame).

Result of the QP: The QP minimizes of the piecewise polynomial

coefficients from (2.4). As such the QP returns these coefficients, which can

easily be used to find rT (t)(p) and ψT (t)(p) for any time t ∈ [t0, tm] by using

(2.4). In other words, the QP allows us to analytically evaluate the position,

yaw and the corresponding derivatives (e.g. velocity, acceleration) of the

trajectory. A single entry of the full trajectory can be expressed as

[
x y z ψ ẋ ẏ ż ψ̇ ẍ ÿ z̈ ψ̈

...
x

...
y

...
z

...
ψ

]
. (4.17)

Since the quadcopter is a differentially flat system (see [3]) with flat outputs

[x, y, z, ψ], entries (4.17) compose a flatness-based trajectory. In order

to track this trajectory using the PAMPC controller from [1], the flatness-

based trajectory need to be mapped to a position, velocity and quaternion

trajectory (required by PAMPC). From [45], for example, we can easily

compute this mapping to obtain a quaternion-based trajectory with entries

of the form: [
x y z ẋ ẏ ż qw qx qy qz

]
. (4.18)

Regeneration of the Landing Trajectory Note that the AprilTag

marker pose estimation may contain error that must be accounted for. To

account for such errors, we repeatedly solve the the minimum snap QP
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program as the quadcopter approaches the landing pad. A heuristic was

chosen for deciding when to re-solve for a new landing trajectory. Specifi-

cally, we found that re-solving for a new trajectory when the quadcopter

was roughly half-way through the current trajectory (in time) produced

satisfactory results. While trajectory regeneration helps mitigate AprilTag

pose estimation error, it could also be useful for when the AprilTag marker

is not stationary in the environment. After trajectory generation, PAMPC

is used to track the landing trajectory.

PAMPC Tracking Control

In PAMPC [1], the optimization problem (2.3) from the baseline MPC is

augmented with an additional perception term in the objective function.

Notation: rWB and qWB denote the position and orientation of frame

B w.r.t. frame W, respectively. The Hamilton product (q · q′) denotes a

rotation by q then by q′. The identity quaternion (i.e. no rotation) can be

expressed by (q−1 · q), where (q−1)−1 = q. Lastly, q ⊙ r := Rot(q)r results

in a rotation of vector r by rotation matrix Rot(q) (see (2.2)).

We define s(t) := [uA(x(t)) vA(x(t))]T as the pixel coordinates of the

projected AprilTag marker center and sd := [cx cy]T (i.e. principal point) as

the desired pixel coordinates. Using the pinhole model (2.13) and coordinate

frames from Figure 4.3, the projected AprilTag coordinates s(t) can be
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calculated (t and x dropped to simplify notation):

uA = fx
[rCA]x
[rCA]z

+ cx, vA = fy
[rCA]y
[rCA]z

+ cy, where

rCA = (qWB · qBC)−1 ⊙ (rWA − (qWB ⊙ rBC + rWB )), (4.19)

where (rWB , qWB ) is from the quadcopter state, (rBC , qBC) is constant and

can be measured and rWA is assumed to be constant and is determined from

(4.7). If the AprilTag marker were to be moving in the world frame, it would

be possible to estimate the velocity of the marker then estimate rWA to solve

(4.19).

The perception term (s(t) − sd) can now be embedded into the objective

function, where we define

zN :=
[
x(N) − xd(N)

s(N) − sd

]
, z(t) :=

x(t) − xd(t)
s(t) − sd

u(t)

 .

Following the notation used in optimization problem (2.3) where F (x,u) is

a discretization of (2.1) with time step ∆t := ti − ti−1, ∀i ∈ {1, . . . , N}, the
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optimization problem for PAMPC can then be expressed:

min
x(t1), ... , x(tN )
s(t1), ... , s(tN )

u(t0), ... , u(tN−1)

zTNQNzN +
N−1∑
i=0

z(ti)TQz(ti) (4.20)

s.t. x(t0) = x̂(t0)

s(t0) = ŝ(t0)

x(ti) = F (x(ti−1),u(ti−1)), ∀i ∈ {1, . . . , N}

s(ti) = [uA(x(ti)), vA(x(ti))]T , ∀i ∈ {1, . . . , N}

u(ti−1) ∈ U , ∀i ∈ {1, . . . , N}

where Q and QN indicate weight matrices and the set of admissible control

inputs is expressed as

U =
{
[τ ωT ]T ∈ R4 : τ ∈ [τmin, τmax], ω ∈ [ωmin, ωmax]

}
. (4.21)

Effectively, by having the PAMPC track a trajectory that already satisfies

the FOV constraint (previous subsection), we improve robustness for the

FOV-constrained landing. Any disturbances toward the end of the flight

trajectory will by compensated for in real time by the PAMPC controller.

An overview of quadcopter flight and landing process is shown in Figure 4.2.
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5 experiment

In this chapter the methods and results for simulated and real-world experi-

ments are presented.

5.1 Method

In both simulation and hardware tests we used ROS 1 and the PX4 flight

control software stack. While our work is agnostic to the VIO algorithm

used, the results we provide were obtained while using ROVIO [8], chosen

for its lightweight implementation and robust performance.

Simulation

Setup: The Gazebo simulator with an iris quadcopter drone is used. This

simulator provides good general support for ROS and PX4 integration while

being able to provide support for multiple simulated cameras, as well as

including advanced physics such as ground effect. The default quadcopter

was adapted to include a visual-inertial stereo camera (front-facing), and a

monocular camera (down-facing). A Gazebo world was designed such that

a sufficient amount of visual features were available for the VIO algorithm

(see Figure 5.1). Rviz was used to visualize the states of multiple ROS topics

such as the estimated poses of the AprilTag marker and the quadcopter, the

position history of where the quadcopter had flown, the output image of
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Figure 5.1: Gazebo world simulation. Note the AprilTag marker which is
used as the landing pad.

the down-facing camera and the predicted trajectory provided by the MPC

controller (see Figure 5.2).

Experiment: For the experiment, the AprilTag marker was placed on

the ground plane such that it was initially out of view of the quadcopter.

The quadcopter then tracks the pre-generated search trajectory using the

MPC controller. The search path trajectory maintained a constant height,

and engages in a back and forth motion to thoroughly scan the simulation

ground plane for the fiducial marker.

After finding the AprilTag and checking landing feasibility, but before

generating a landing trajectory, a desired flight duration (i.e. tm − t0) must
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Figure 5.2: The flight path history (green) for a simulation flight displayed
in Rviz. The quadcopter first tracks the search trajectory (starts on right).
Once the AprilTag is visualized the landing sequence is initialized. The blue
trajectory shows the lastest landing trajectory produced by the min-snap
QP.

be provided to QP (4.10). This flight duration is heuristically determined

based on the distance to the detected AprilTag marker and the current

velocity of the quadcopter. A desired average speed is determined given by

savg = |sbasee−µvz |, where sbase is the desired average speed if the quadcopter

velocity in the z-direction (i.e. vz) is zero, and µ is a tuning constant. The

flight duration is then computed as tdur = z/savg, where z is height above

the landing pad.

Once the quadcopter had followed the current landing trajectory for

a time of 0.5tdur, a new min-snap trajectory is generated (“regeneration”
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from figure 4.2). This is done in order to account for errors in the AprilTag

location estimation. As the quadcopter continues the landing, the AprilTag

will naturally enter the center of the camera FOV, allowing for more accurate

landing pad position estimation.

Finally, once the quadcopter descends below a predetermined cutoff

height, the motors are shut off and the quadcopter lands on the landing pad.

This framework allows for fast and accurate landing.

Hardware

Setup: Before performing experiments, camera calibration and thrust

mapping is required. Both the front-facing and down-facing cameras are

calibrated using Kalibr. The better the calibration of the down-facing

camera is, the better the estimation of the AprilTag position. Regarding

thrust mapping, we need to find a mapping from force-normalized thrust

to PX4-normalized thrust (i.e. values in the range [0, 1]). To do this, we

record log data of a quadcopter flight, then determine the force-normalized

thrust at each time step based on the recorded acceleration and attitude. A

polynomial is fit between this data and the PX4-normalized thrust that was

also recorded at each time step. See figure 5.3 for the quadcopter thrust

map.

Experiment: For the hardware experiment, the simulation experiment

procedure is repeated, with extra care taken for maintenance of battery

voltage to ensure consistent performance. The tests are performed indoors
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Figure 5.3: A cubic thrust mapping (orange line) fit to PX4 thrust data
from a real-world flight.

where a motion capture (mocap) system is used for verification. Mocap can

optionally be used to provide a fail safe for the quadcopter if the VIO state

estimation fails.

5.2 Results

To investigate the effectiveness of the result, during the flight we record the

distance from the projected landing pad center to the center of the camera

image plane once the landing pad enters the FOV of the down-facing camera.

From the AprilTag estimation algorithm, the pose of the landing pad

w.r.t. the down-facing camera (rCA) is provided. The point rCA in the
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camera frame can be projected into the image plane coordinates according

the pinhole model. Letting (uA, vA) be the horizontal and vertical pixel

locations in the image plane of the AprilTag center, we have:

uA = fx
[rCA]x
[rCA]z

+ cx, vA = fy
[rCA]y
[rCA]z

+ cy,

where fx, fy are respectively vertical and horizontal focal lengths in units of

pixels and (cx, cy) is the image principal point location.

The same experiment is conducted in simulation both with FOV con-

straints and without FOV constraints. The preliminary results in Figures

5.4 and 5.5 show promising results for the effectiveness of the approach. The

tested trajectories show that the FOV constrained flight is able to keep the

landing pad center closer to the image principal point, as compared to not

using FOV constraints.

Furthermore, while VIO has not yet been used in the hardware setting,

an initial test of the landing algorithm was successful while using Mocap for

state estimation on the real-world quadcopter. See figure 5.6 for images of

the flight and landing.
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Figure 5.4: Trajectories of the landing pad center projected onto the image
plane.

Figure 5.5: Distance between projected landing pad center to image principal
point in pixels. Smaller is better.
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Figure 5.6: Real-world flight and landing of the quadcopter. Left: The
green oval shows when the quadcopter starts tracking the search trajectory.
The blue oval shows a successful landing. Right: Close up of the landed
quadcopter.
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6 conclusion

This work considers the problem of autonomous quadcopter landing for

vision-enabled systems. This issue requires a quadcopter-mounted camera

to maintain view of the landing area at all times. We tackle this challenge

by proposing FOV constraints, linear in the minimum-snap QP decision

variables. This enables trajectory generation that inherits the speed of the

min-snap QP work, while ensuring visibility of the landing pad for improved

landing accuracy. This work utilizes VIO for state estimation, showing high

practicality for GPS-denied environments. Use cases for this line of research

are extensive and include safer human-robot interaction, more efficient drone

delivery services and fast autonomous landing on moving vehicles to name a

few.
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a quadcopter materials list

Part Product Specification
Frame Pyrodrone

Source One
7in

Motors EMAX ECO II
Series 2807

1300KV

Propellors HQ Prop tri-
blade

7in, 4◦ pitch

Battery GEPRC Li-ion 3000mAh, 22.2V
FCU Kakute H7 v2 -
ESC Tekko 32 4-in-1

ESC
65A

CC NVIDIA Jetson Xavier NX
VIO Camera Intel d435i stereo + IMU
Mono Camera Waveshare

IMX219-160
160◦ FOV

Table A.1: Main components of the quadcopter.
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